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Direct numerical simulations of a turbulent fluid laden with finite-sized particles are
performed. The computations, on a 1283 grid along with a maximum of 262 144
particles, incorporated both direct particle interactions via hard-sphere collisions and
particle feedback. The ‘reverse’ coupling is accomplished in a manner ensuring correct
discrete energy conservation (Sundaram & Collins 1996). A novel two-field formalism
(Sundaram & Collins 1994a) is employed to calculate two-point correlations and
equivalent spectral densities. An important consideration in these simulations is the
initial state of fluid and particles. That is, the initial conditions must be chosen so
as to allow a meaningful comparison of the different runs. Using such a carefully
initialized set of runs, particle inertia was observed to increase both the viscous
and drag dissipations; however, simultaneously, it also caused particle velocities to
correlate for longer distances. The combination of effects suggests a mechanism for
turbulence enhancement or suppression that depends on the parameter values. Like
previous investigators, ‘pivoting’ or crossover of the fluid energy spectra was observed.
A possible new scaling for this phenomenon is suggested. Furthermore, investigations
of the influence of particle mass and number densities on turbulence modulation are
also carried out.

1. Introduction
A fundamental understanding of the nature of turbulent solid–fluid flows is of

importance in many atmospheric (e.g. pollutant transport and raindrop growth), in-
dustrial (e.g. aerosol processing and solids transport) and even physiological processes
(e.g. arterial/pulmonary transport). Problems targeted for investigation in particulate
flows usually involve particle dispersion, turbulence modulation or particle coagu-
lation. Separate studies focusing on a selected problem are required as dispersion
is essentially controlled by large-scale motion of fluid turbulence in contrast with
turbulence modulation and coagulation which are thought to be primarily driven by
small scales. This study deals exclusively with aspects of turbulence modification by
suspended, heavy particles.

There are three distinct regimes in particle–fluid flows characterized by the particle
volume and mass concentrations. First, at very low volume and mass loadings, the
particles do not affect the surrounding flow and are themselves only transported by the
local flow – termed ‘one-way’ coupling. The unmodified turbulence is solved using well
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understood single-phase models. The passive advection of particles can be adequately
characterized using stochastic (see reviews by Crowe, Troutt & Chung 1996 or Shi-
rolkar, Coimbra & McQuay 1996) or deterministic (see reviews by McLaughlin 1994
or Elghobashi 1991 or the older description of modelling approaches by Crowe 1982)
models of choice. The second regime includes suspensions that are low in volumetric
concentrations due to small particle sizes, yet have moderately high mass loadings,
attributable to high particle densities. Conventional wisdom dictates that particle–
particle interactions, both direct (collisions) and hydrodynamic can be neglected in
this regime. However, new findings on the particle-concentration fields, which will be
discussed later in this paper, suggest that direct particle interactions may still play an
important role. Furthermore, even though the volume fraction of particles is small,
the solid particles significantly alter the nature of the continuous-phase turbulence
– hence ‘two-way’ or ‘reverse’ coupling must be taken into consideration. Thirdly, at
high particle volume concentrations (and mass concentrations) particle dynamics be-
come collision-dominated and the fluid mechanics under low void fraction conditions
becomes nearly intractable. This regime is sometimes referred to as ‘granular flow’.
In this study we will be primarily addressing particulate suspensions that are in the
volumetrically dilute, though appreciably mass loaded (or second) regime.

There is a large body of experimental work on dilute, particulate turbulence in jet,
pipe and channel flow configurations (Tsuji 1991). Under a particle load, some inves-
tigators reported augmentation of the fluid-phase turbulence while others observed
the contrary. Gore & Crowe (1989) attempted to correlate the above behaviour in
terms of a single length scale parameter σ/le, where σ is the particle diameter and le
is the integral length scale of the turbulence. A serious drawback in this reasoning
was the non-inclusion of particle density which, along with size, determines particle
inertia. The ability of particles to respond to the multiple scales of turbulent motion is
considered the primary factor in determining turbulence modification. Hetsroni (1989)
included particle inertia in his analysis and suggested that a cutoff for turbulence
augmentation or suppression be based on the particle Reynolds number, Rep. Yuan &
Michaelides (1994) obtained a simple expression for turbulence modulation involving
particle parameters and turbulence intensity, based on a balance between turbulence
reduction caused by the work required to accelerate the particles and turbulence
production due to particle wakes. Yarin & Hetsroni (1994) proposed another model
based on a combination of mixing length and kinetic energy balance methods. While
they show fair agreement with the data, both theories do involve ad hoc modelling
procedures leaving many questions regarding turbulence modulation still unanswered.

Spectral methods, in combination with modern day computers, provide the means
to simulate turbulence with very high accuracy, free from any ad hoc modelling. The
bulk of numerical simulation studies on particle-laden turbulent flows have focused
on particle-phase phenomena such as dispersion and settling. More recent work has
focused on the energy exchange between the phases by incorporating the particle
forces into the fluid equation of motion (so called reverse coupling). For example,
Pan & Bannerjee (1997) simulated the motion of large heavy particles entrained in a
turbulent channel flow. They showed that the particles influence the ejection–sweep
processes responsible for generating Reynolds stress near the wall, thereby enhancing
or diminishing the turbulence depending on particle size. The results are relevant
to the present study; however, their simulation was limited to particles much larger
than the Kolmogorov scale, whereas the present study focuses on particles that are
smaller than the Komogorov scale. Nevertheless, the general trends they observe are
consistent with our observations.
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Two prior investigators have simulated modulation of turbulence by small parti-
cles in a homogeneous, isotropic setting. Squires & Eaton (1990) studied point-sized
particles in turbulence subject to Stokes drag. As external forcing was used in their
simulation to produce stationary turbulence, it is not possible to draw general con-
clusions from their study regarding the partitioning of energy between particles and
fluid. However, they did report that the particles augmented the energy content of the
fluid at high wavenumbers while decreasing it at low wavenumbers with the net effect,
apparently dissipative. This result, while intuitively reasonable, needed further verifi-
cation as forcing schemes do affect spectral dynamics in the low wavenumber region.
Elghobashi & Truesdell (1993) carried out a similar study, but in decaying turbulence
both with and without gravitational forces. It was found that particles, in the absence
of gravity, consistently decreased levels of fluid turbulence. With gravity included, they
found that the particles could increase fluid turbulence. They also observed a similar
‘pivoting’ or ‘crossover’ of the laden fluid spectrum when compared with that of the
unladen flow. Transfer spectra exhibited identical behaviour and it was concluded that
particles modulate turbulence by altering the inertial transfer mechanism. Unfortu-
nately, their study cannot precisely identify the mechanism responsible for the pivot in
the fluid energy spectrum because the pivot results from a change in the energy trans-
fer mechanism (as they suggest) and from energy exchange between the two phases.
Considering the fluid phase alone cannot distinguish between these mechanisms. The
present spectral analysis takes into consideration both the fluid and particle phases
and thus allows us to pinpoint the origin of the pivot in the energy spectrum.

Other DNS calculations by Squires & Eaton (1991) and Wang & Maxey (1993)
showed, using forced turbulence, that the particle concentration field is non-uniform
and that particles preferentially accumulate in low-vorticity regions of the flow.
Sundaram & Collins (1997) observed a persistence of this phenomenon even in
the presence of particle interactions in the form of hard-sphere collisions, which
counteract the inertial effect responsible for segregating the particles. This result is
important because it indicates that even uniformly distributed particle systems will
eventually segregate into particle-rich and particle-lean subregions, depending on the
size and mass of the particles. Moreover, due to high local concentrations, turbulence
modulation may be significant even at low mean concentrations.

A complementary approach to simulation of particle-laden flows is to use models
that describe average properties of the two-phase flow field. The most prevalent
approach to modelling multiphase, and specifically, particulate flows is based upon a
two-fluid approach, wherein both the fluid and particle phases are treated as interpen-
etrating continua. Following the formulation of the continuity and momentum equa-
tions for each phase, unknown terms are either closed directly or additional equations
are generated. Closures are then postulated for the new equations, along with the intro-
duction of a new class of empirical constants prescribing the interaction or exchange
between the two phases. Empirical constants with analogues to single-phase formu-
lations are rarely altered from their single-phase equivalents, while new constants are
fixed by comparing the model predictions to experimental measurements. Such models
of the k–ε family, with additionally generated transport equations, have met with only
limited success (Ishii 1975; Elghobashi & Abou-Arab 1983; Besnard & Harlow 1985).

Implicit in all simple two-equation models of turbulence, such as the k–ε model, is
the assumption that the energy spectrum rapidly relaxes into a universal shape that
is completely characterized by the two turbulence properties. This characteristic of
turbulence has been observed and is widely accepted in single-phase turbulence, even
in complex geometries. However, the existence of an universal energy spectrum for
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particle-laden turbulent flows has yet to be established. For example, the particle size
and response time introduce new scales into the dynamics of the energy spectrum
which may potentially disrupt the attainment of spectral self-similarity. Thus, the
foundation for the simple models of particle-laden turbulent flows is lacking.

It is our belief that the statistical properties of the total two-phase system, only,
provide a basis for understanding the coupling of the two phases. The absence of work
on the total energy spectrum is due in part to the lack of a methodology to compute
spectral statistics equivalent to single-phase flows. In previous research, Sundaram &
Collins (1994a,b) developed such a formalism by treating the particle–fluid system as
a single ‘pseudo-fluid’ with density variations occurring discontinuously at particle
interfaces. Because all points in the system, within both the fluid and particle phases,
are well defined and equivalent, definitions for two-point correlations remain the same
as in incompressible turbulence. The only minor complication is that in the particulate
system, correlations involving fluid–fluid, fluid–particle, and particle–particle must be
accounted for separately; however, this only increases the bookkeeping but otherwise
poses no fundamental change from the single-phase case.

The first two-point statistic that will be discussed is the density correlation, defined
as ρ′(x)ρ′(x+ r), where ρ′ denotes the fluctuation about the mean density and the
overbar implies an ensemble average. Aside from being the simplest of the two-point
statistics, the density correlation is also known to play a significant dynamic role in
the evolution of particle-laden flows. For example, in the presence of a mean pressure
gradient, the density correlation is known to create an important source of turbulent
energy in multiphase flows (Clark & Spitz 1994). Consequently, much attention has
been devoted to correlations of the density field in various modelling efforts (Besnard
& Harlow 1985; Clark & Spitz 1994; Besnard et al. 1990).

The advantages of using multi-point statistics to analyse a particle-laden system
can be illustrated in the following manner. Consider two identical volumes of fluid,
each containing Np particles of the same density and diameter. The first system (I)
contains particles that are randomly distributed throughout the volume while the
second system (II) has regions of high and low particle concentration (note, this is a
realistic scenario since particles do accumulate in regions of low vorticity, as will be
shown). If we consider the entire volume as a whole, the single-point mean density

autocorrelation can be shown to be ρ′2 = αpαf(ρp − ρf)2, where αp and αf are the
volume fractions of particles and fluid respectively, and ρp and ρf are the particle and
fluid densities respectively. As the particle and fluid volume fractions are functions
of Np only, the single-point density correlations for the two systems are identical.
However, the dynamic response of these two systems to a gravitational field or a
pressure gradient will be quite different, and so any reasonable description of these
systems must incorporate the spatial distribution of the particles.

Besnard & Harlow (1985) attempted to accomplish this by allowing the volume
fractions themselves to ‘fluctuate’ to represent the high and low concentrations of
the particles in the system. Unfortunately, this introduces an ambiguity into the
model because the magnitude of the fluctuations of the volume fractions will depend
on the size of the volume over which averages are computed, which is completely
arbitrary. The alternative approach taken here uses the two-point density correlation
to characterize the system. This statistic is inherently superior because it accounts for
the particle distribution as a continuous function of the separation distance; thus, it
does not introduce an artificial volume size into its averaging procedure. Moreover,
the two-point density correlation (or spectrum) has the flexibility to separate out the
influence of all of the different length scales in the system. We believe this is crucial
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for capturing the complex interaction between the two phases at the different scales
of motion.

In this study, we extend the earlier work to compute the Reynolds stress and energy
spectrum. Critical intra and inter phase correlations are identified and determined
from direct numerical simulations of decaying isotropic turbulence performed on a
1283 grid. Because we consider the total energy, the complex mechanisms responsible
for energy exchange between the two phases are not relevant, and instead the focus
is on the mechanisms that either enhance or diminish the total kinetic energy in the
system. Our results show that in the absence of source terms (e.g. due to mean flow
gradients, gravity, etc.), particles manifestly reduce the turbulent kinetic energy by
increasing the viscous dissipation rate.

This raises an important question. If particles are manifestly dissipative, how then
can they ever enhance the turbulent kinetic energy of a flow? The only satisfactory
explanation appears to be that particles must, by some unknown mechanism, augment
the production rate of turbulence as well. Unfortunately, the simulations performed
in this study do not contain a turbulence source term so we cannot determine the
mechanism responsible for enhancing the production rate. Nevertheless, our results
do suggest a possible new mechanism by which particles may enhance the mean shear
(i.e. vortex stretching) production rate. The details of the proposed mechanism are
presented in §7.

The paper is organized as follows: §2 outlines the essential details of the spectral
analysis of particulate flows, and §3 discusses simplifications of the theory for the
conditions of this study. The governing equations for the numerical simulations as
well as the numerical methods used are set out in §4. Single-point energies and
dissipations from the simulations are discussed in §5. Next, two-point correlations
and spectra are presented beginning with the density correlation in §6, followed by
the velocity correlations and spectra in §7. The results are summarized in §8.

2. Theory
The methodology developed earlier to compute two-point correlations in particulate

flows (Sundaram & Collins 1994a) will be briefly reviewed here. We consider a
canonical ensemble of systems, each having a total volume V embedded with precisely
Np non-deformable, spherical particles each of diameter σ and density ρp, dispersed
in a fluid of density ρf . Note that for a periodic system the volume V is assumed to
be an integer multiple of the natural period of the system. We then define the centre
of the nth particle to be xn and its velocity to be vn. All two-point correlations in
such a system can be expressed as a sum of contributions over the particle phase
alone, fluid phase alone and between particle and fluid phases. This breakup, while
increasing the number of unknowns to be tracked, is necessary to describe two-point
correlations in a two-phase system. We start by defining an identifier (or colour)
function to distinguish the particle phase from the fluid phase:

βp(x) =

{
1 within particle phase
0 otherwise,

(1)

βf(x) = 1− βp(x). (2)

Hereafter, indices p and f will be used solely to denote the particulate and fluid
phases respectively. Mathematically, the particle colour function can be written in the
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following manner:

βp(x) =

Np∑
n=1

H
(σ

2
− |x− xn|

)
, (3)

where H represents the Heaviside (or unit step) function. By definition, the ensemble
averages of the colour functions are

βp(x) = αp, (4)

βf(x) = αf, (5)

where αp and αf are the particle and fluid volume fractions, respectively. In addition,
a fluctuating component of the colour functions may be defined as

β′p(x) = βp(x)− αp =

Np∑
n=1

H
(σ

2
− |x− xn|

)
− αp, (6)

β′f = −β′p. (7)

If we now consider an arbitrary function Γ (x) (say), which is continuous in either
phase but is allowed to change discontinuously at the phase boundaries (i.e. particle
interfaces), the ‘phase’ averages can be defined as

Γ
p ≡ βp(x)Γ (x)

αp
, (8)

Γ
f ≡ βf(x)Γ (x)

αf
, (9)

where the superscripts indicate averaging within that phase only. It then follows that
the ensemble average of Γ can be written as

Γ = αpΓ
p

+ αfΓ
f

(10)

and the overall fluctuation, defined as Γ ′(x) ≡ Γ (x)− Γ , by

Γ ′(x) = (Γ
p − Γf

)β′p(x) + Γ ′p(x) + Γ ′f(x), (11)

where Γ ′p(x) ≡ βp(x)(Γ (x) − Γp
) and Γ ′f(x) ≡ βf(x)(Γ (x) − Γf

) represent the ‘phase’
fluctuations. The accompanying colour functions serve as a reminder that these phase
fluctuations are defined within the respective phases only. Equation (11) states that
overall fluctuations may be caused by differences in the mean value in the two phases
and by variations of the quantity within each of the phases (phase fluctuations). A
generic two-point correlation is then given by

Γ ′(x)Γ ′(x+ r) = (Γ
p − Γf

)2 β′p(x)β′p(x+ r)︸ ︷︷ ︸
distributional

+ βp(x)Γ ′p(x)βp(x+ r)Γ ′p(x+ r)︸ ︷︷ ︸
particle−particle

+ βf(x)Γ ′f(x)βf(x+ r)Γ ′f(x+ r)︸ ︷︷ ︸
fluid−fluid

+ βf(x)Γ ′f(x)βp(x+ r)Γ ′p(x+ r) + βp(x)Γ ′p(x)βf(x+ r)Γ ′f(x+ r)︸ ︷︷ ︸
fluid−particle

+
[
βp(x)βp(x+ r)Γ ′p(x+ r) + βp(x+ r)βp(x)Γ ′p(x)

+ βp(x)βf(x+ r)Γ ′f(x+ r) + βp(x+ r)βf(x)Γ ′f(x)
] (
Γ
p − Γf

)
︸ ︷︷ ︸

cross terms

. (12)
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For a given two-point correlation, relationships are derived for each of the component
correlations shown in (12), and the complete correlation is then obtained by summing.

2.1. Density correlation

We begin with the simplest two-point correlation that can be defined, the density
correlation, defined as

B(r) = ρ′(x)ρ′(x+ r). (13)

Using the previously defined identifier functions the overall density can be expressed
as

ρ′(x) = β′p(x)(ρp − ρf). (14)

Note that since the density within each phase is constant, the other terms in (11) are
identically zero. Substituting the above expression for the density fluctuation yields

B(r) = β′p(x)β′p(x+ r)(ρp − ρf)2. (15)

The correlation β′p(x)β′p(x+ r) is a function of the configurational arrangement of
the particles. In earlier work (Sundaram & Collins 1994a), we derived an exact
relationship between the β-correlation and the particle radial distribution function,
g̃pp(r). The resulting expression for the density correlation was

B(r) =

[
αp

Vp
I(r) +

(
αp

Vp

)2 ∫
V

h̃pp(|z|)I(|r − z|) dz

]
(ρp − ρf)2, (16)

where

h̃pp(z) = g̃pp(z)− 1, (17)

I(r) =

{
Vp[1− 3

2
r/σ + 1

2
(r/σ)3], r/σ 6 1

0, r/σ > 1,
(18)

and Vp is the volume of the particle (i.e. πσ3/6). The function I(r) is referred to as the
‘overlap function’ because it is defined as the volume of overlap between two spheres
separated by a distance r ≡ |r|. Note that˜is used throughout to distinguish particle
centre statistics from those averaged over the particle phase, and the superscript ‘pp’
identifies a particle–particle correlation.

The above relationship (16) can be understood as follows. The first term within the
square brackets represents the contribution arising from intra-particle correlations,
whereas the second term accounts for the inter-particle correlations. The inter-particle
correlation is a function of the location of particle centres, which in turn is described
by the particle radial distribution function (RDF), g̃pp(r) (or more precisely, h̃pp(r) =
g̃pp(r) − 1). The definition of the RDF itself can be simply stated as the normalized
expectancy of finding a second particle at a distance r from any given particle. For a
homogeneous system this may be stated as (McQuarrie 1976)

g̃pp(r) =
Np(Np − 1)

n2

∫
V

· · ·
∫
V

P (Np)(x1, · · · , xNp) dx3 · · · dxNp , (19)

where r ≡ x1−x2, n = Np/V is the number density of particles and P (Np)dx1 · · · dx(Np)

represents the probability of finding particle 1 distributed within a volume dx1 centred
at point x1, and so on; note that the probability is normalized such that∫

V

· · ·
∫
V

P (Np)(x1, · · · , xNp) dx1 · · · dxNp = 1. (20)
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There are two important properties of B(r) that are worth noting. First, its value
at r = 0 (i.e. single-point value) is related to the volume fraction of the particles by

B(0) = ρ2 − ρ̄2 = αpαf(ρp − ρf)2. (21)

Secondly, its integral over the system volume V vanishes (Sundaram & Collins 1994a)∫
V

B(r) dr = 0. (22)

Given this boundedness, it is possible to define the Fourier transform of (16) and
thereby obtain the density correlation spectrum. Omitting the details (Sundaram &
Collins 1994a), the final result is

B̂(k) =
αp

Vp
Î(k)

[
1 +

αp

Vp

ˆ̃hpp(k)

]
(ρp − ρf)2, (23)

where

Î(k) = 144V 2
p

(
kσ cos (kσ/2)− 2 sin (kσ/2)

)2

(kσ)6
. (24)

In order to evaluate B(r) and B̂(k), we will need to determine the radial distribution

functions, or to be more precise h̃pp(r) and ˆ̃hpp(k). In the earlier study (Sundaram &
Collins 1994a), these particle field statistics were approximated by using the Percus–
Yevick solution for hard-sphere gases (Percus & Yevick 1958). This approximation
is valid for very high mass loadings (granular systems), but cannot be used in
the present circumstance. Instead, they are determined from the direct numerical
simulations. The details of the evaluation of these properties from the simulations are
discussed separately in §6.

2.2. Reynolds stress

For a given particle–fluid system, the velocity fluctuation can be decomposed in the
following manner:

u′i(x) = βp(x)vi(x) + βf(x)ufi (x), (25)

where vi(x) is a shorthand notation for the velocity of the particle that overlaps point

x, or more precisely vi(x) ≡ ∑Np

n=1 H
(

1
2
σ − |x− xn|) vni . Hereafter, the superscript f

in u
f
i (x) will be suppressed, and instead we adopt the convention that the variable

u (without a prime) is reserved exclusively for fluid velocities while v is for particle
velocities. Note that the velocity within either phase is not constant (as was the case
with density), but the phase-averaged values vanish because there is zero net flow in
this isotropic system. Hence, the distributional and cross terms in (12) vanish.

A generalized Reynolds stress tensor can be defined as

Rij(x, x+ r) ≡ ρ(x)u′i(x)u′j(x+ r). (26)

For homogeneous fields, Rij(x, x+ r) = Rij(r). Substituting (25) into (26), we obtain

Rij(r) = R
ff
ij (r) + R

fp
ij (r) + R

pf
ij (r) + R

pp
ij (r), (27)

where

R
ff
ij (r) = ρf βf(x)ui(x) βf(x+ r)uj(x+ r), (28a)

R
fp
ij (r) = ρf βf(x)ui(x) βp(x+ r)vj(x+ r), (28b)
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R
pf
ij (r) = ρp βp(x)vi(x) βf(x+ r)uj(x+ r), (28c)

R
pp
ij (r) = ρp βp(x)vi(x) βp(x+ r)vj(x+ r). (28d)

R
ff
ij ,Rfpij , Rpfij , and R

pp
ij refer to fluid–fluid, fluid–particle, particle–fluid and particle–

particle correlations respectively. The single-point values for these correlations can be
shown to be

R
ff
ij (0) = ρfαfuiuj

f, (29a)

R
pp
ij (0) = ρpαpvivj

p, (29b)

R
fp
ij (0) = R

pf
ij (0) = 0; (29c,d)

hence,

Rij(0) = ρpαpvivj
p + ρfαfuiuj

f. (29e)

Once again, the superscripts adjacent to the overbars indicate conditional averages
within that field only. The cross terms (fluid–particle and particle–fluid) are iden-
tically zero because the particle phase excludes the fluid phase, following (1). The
decomposition shown in (29e) forms the basis of numerous two-phase models in the
literature; however, our intent here is to analyse the complete two-point correlation
and not just the single-point moments.

As mentioned before, velocity correlations over each phase and across the phases
have to be treated separately. First, we present expressions for each component of
the Reynolds stress (see Appendix A for details):

R
ff
ij (r) = α2

fρfg̃
ff(r)Ẽff

ij (r), (30)

R
fp
ij (r) =

(
αpαf

Vp

)
ρf

∫
V

H
(σ

2
− |r − z|

)
g̃fp(z)Ẽfp

ij (z) dz, (31)

R
pf
ij (r) =

(
αpαf

Vp

)
ρp

∫
V

H
(σ

2
− |r − z|

)
g̃pf(z)Ẽpf

ij (z) dz, (32)

R
pp
ij (r) = ρp

v2
p

3

αp

Vp
I(|r|)δij +

(
αp

Vp

)2

ρp

∫
V

g̃pp(|z|)Ẽpp
ij (|z|)I(|r − z|) dz. (33)

Ẽ
ff
ij , Ẽfp

ij , Ẽpf
ij and Ẽpp

ij represent conditional correlations involving only the velocities
at particle centres and/or fluid points:

Ẽ
ff
ij (r) =

[
ui(x)uj(x+ r) | βf(x) = 1; βf(x+ r) = 1

]
, (34)

Ẽ
fp
ij (r) =

[
ui(x)vmj | βf(x) = 1; xm = x+ r

]
, (35)

Ẽ
pf
ij (r) =

[
vmi u

′
j(x+ r) | xm = x; βf(x+ r) = 1

]
, (36)

Ẽ
pp
ij (r) =

[
vmi v

n
j | xm = x; xn = x+ r

]
, (37)

where here the overbars indicate conditional ensemble averages, and the conditions
to be satisfied are shown to the right of the vertical line. At the risk of nomenclature
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confusion, Ẽij – the density free velocity correlations involving particle centres – are
introduced here to distinguish phase-averaged quantities (Rij) from particle-centre

quantities (Ẽij). The particle-centre statistics are obtained directly from DNS and the
phase-averaged quantities are computed from (30)–(33).

In (30)–(33) g̃pp refers to the classical particle–particle radial distribution function
(19); g̃ff , g̃fp, and g̃pf are concise notations for the radial distribution functions asso-
ciated with the fluid–fluid, fluid–particle, and particle–fluid correlations respectively.
However, it must be noted that these distribution functions are not independent
and are related to g̃pp. These relations in physical and spectral space are listed in
Appendix B.

The only assumption imposed thus far is homogeneity of the velocity field. The
further assumptions of isotropy, dilute particle volume fractions, and small particles
allows additional simplifications, as discussed in detail in §3.

3. Assumptions and simplifications
As noted in the introduction, particulate turbulent flows encompass a wide variety

of regimes (from ‘granular’ to ‘dilute’ systems) and often suitable assumptions may
be invoked to reduce the complexity of a given problem. The present study deals
with volumetrically dilute suspensions (αp � 1) of very small (σ < η) but heavy
(ρp � ρf) particles. While these conditions may appear to be rather restrictive, this
class of particulate suspensions is often encountered in practice. In addition, since the
simulations performed in this study neglected gravity, the turbulence (and all related
correlations) remains isotropic.

The general implications of these assumptions are as follows:
(i) αp � 1 in combination with ρp � ρf (αpρp = O(1)) allows the neglect of

particle–particle and some fluid–particle contributions to the Reynolds stress. This
also implies that the RDFs can be approximated as g̃ff = g̃fp = g̃pf ≈ 1 with a
remainder O(αp).

(ii) σ < η implies that variations of the correlation functions over particle volumes
can be neglected to a first approximation thus eliminating the convolution integrals
(shown in (30)–(33)).

The second assumption will limit the reliable range of the phase-averaged cor-
relations to |r| > σ (or equivalently in Fourier space, |k| < 1/σ); however, for the
purposes of this study, this is the range of greatest interest. The resulting simplified
expressions are

B(r) =

[
αp

Vp
I(r) + α2

ph̃
pp(r)

]
(ρp − ρf)2, (38)

B̂(k) =

[
αp

Vp
Î(k) + α2

p
ˆ̃hpp(k)

]
(ρp − ρf)2. (39)

The Reynolds stress expressions shown in (31)–(33) likewise can be reduced under
the present circumstances. Under the assumptions that σ < η and αp � 1, three of
the RDFs can be replaced by unity and the integrals can be simplified in a manner
equivalent to the density correlation yielding

R
ff
ij (r) = α2

fρfẼ
ff
ij (r) = O(1), (40)

R
fp
ij (r) = αpαfρfẼ

fp
ij (r) = O(αp), (41)
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R
pf
ij (r) = αpαfρpẼ

pf
ij (r) = O(1), (42)

R
pp
ij (r) = ρp

v2
p

3

αp

Vp
I(|r|)δij + α2

pρpg̃
pp(|r|)Ẽpp

ij (|r|) = O(αp). (43)

Furthermore, according to tensor invariance theory, the Reynolds stress tensor in
isotropic turbulence can be expressed in terms of a single scalar function of r (or a
single scale function of k in transform space). Consequently, one need only consider
the trace of the Reynolds stress (say), rather than consider the entire nine components
(Hinze 1975). Combining these approximations, we arrive at the following expression
(see Sundaram 1996 for details):

R(r) = α2
fρfẼ

ff(r) + αpαfρpẼ
pf(r), (44)

where

R(r) = 1
2
Rii(r), (45)

Ẽff(r) = 1
2
Ẽ
ff
ii (r), (46)

Ẽpf(r) = 1
2
Ẽ
pf
ii (r). (47)

Fourier transforms of these results can be obtained in the standard fashion (Hinze
1975):

R̂(k) = α2
fρf

ˆ̃E
ff

(k) + αpαfρp
ˆ̃E
pf

(k), (48)

where

ˆ̃E
ff

(k) = 1
2

ˆ̃E
ff

ii (k), (49)

ˆ̃E
pf

(k) = 1
2

ˆ̃E
pf

ii (k), (50)

For the sake of completeness, fluid–particle and particle–particle correlations and
spectra may be correspondingly defined by

Ẽfp(r) = 1
2
Ẽ
fp
ii (r), (51)

Ẽpp(r) = 1
2
Ẽ
pp
ii (r), (52)

ˆ̃E
fp

(k) = 1
2

ˆ̃E
fp

ii (k), (53)

ˆ̃E
pp

(k) = 1
2

ˆ̃E
pp

ii (k). (54)

4. Direct numerical simulations
This study is concerned with the motion of heavy particles in a turbulent, suspending

medium. Given that present methods of forcing interfere with the spectral dynamics
in some unknown manner, it was decided to restrict this study to freely decaying,
isotropic turbulence. This does introduce additional complications in the form of
time-dependent turbulence properties. However, it is expected that after a suitable
equilibration period, and well before the limit of weak turbulence sets in, it will be
possible to observe the intrinsic modulation of turbulence by particles, independent
of the initial conditions.
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Gravity is neglected to preserve the isotropic nature of the problem and for the
sake of simplicity. Note that in the presence of gravity, the ensuing settling-induced
relative motion can cause turbulence production (Elghobashi & Truesdell 1993). In
this case, particle potential energies would have to be accounted for in addition to
particle and fluid kinetic energies in the energy balance. Particles in our simulations
owe their motion to initialization and fluid turbulence alone.

4.1. Particle motion

The motion of discrete particles in a suspending fluid has been studied quite exten-
sively. Maxey & Riley (1983) derived the full particle equation of motion under the
conditions σ � η and σ∆u/ν � 1 where ∆u is the characteristic velocity difference
between the particle and local fluid. Particles are also assumed to be sufficiently large
that any Brownian or non-continuum motion of the particles may be neglected (i.e.
infinite Péclet number). The governing equations for the nth particle are then given
by

dxn

dt
= vn, (55)

dvn

dt
=
u(xn)− vn

τp
+
∑
j 6=n

anj , (56)

where

τp ≡ ρpσ
2

18µ
, (57)

xn and vn denote the instantaneous position and velocity of the nth particle centre
and τp, referred to as the particle response time, is a measure of particle inertia. anj

represents the instantaneous acceleration of the nth particle due to an elastic (i.e.
momentum and energy conserving) collision with the jth particle. The assumption of
linear drag is valid under the condition that σ∆u/ν < 1 and ρp/ρ � 1 (Maxey &
Riley 1983). In view of the low particle Reynolds numbers encountered, inclusion of
nonlinear drag was deemed unnecessary. Particles obey periodic boundary conditions.

Since particles are not restricted to lie on the fluid grid points or vertices an
interpolation function, S , is needed to estimate fluid velocities at the particle centres.
The interpolation function has the following general form:

u(xn) =
∑
v

S(xn, xv)u(xv), (58)

where xv represents a fluid vertex or grid point. The function chosen for the forward
interpolation is a piecewise cubic Lagrangian polynomial.

Another novel aspect of these simulations is the implementation of direct particle
interactions modeled as hard-sphere elastic collisions. A detailed description of the
principles and algorithm used to compute particle collisions is provided in Sundaram
& Collins (1996). This study uses the same method to resolve contact and advance
the particles.

4.2. Fluid motion

The fluid phase is governed by the incompressible Navier–Stokes equations. Even
though the direct influence of the particles on the continuity equation is neglected, in
view of the extremely low volumetric loadings, the effect on the fluid momentum is
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accounted for. The resulting equations are

∇ · u = 0, (59)

∂u

∂t
+ u · ∇u = −∇P

ρf
+ ν∇2u− 1

ρf

Np∑
n=1

mp
(u(xn)− vn)

τp
δ(x− xn), (60)

where mp ≡ ρpVp is the particle mass. The last term on the right-hand side of (60) is
the force exerted by the particles on the fluid. Once again, since this force is computed
at the particle centres, we must model the particle force at the grid vertices where the
fluid field is updated. The discretized particle source term is given by

Np∑
n=1

ρpVp

ρfVg

(u(xn)− vn)
τp

S∗(xn, xv) (61)

where Vg is the volume of fluid being updated and S∗(xn, xv) is the ‘reverse’ or
‘backward’ interpolation function. Recall from (58) that the particle update requires
a ‘forward’ interpolation of the fluid velocity to the particle position (S(xn, xv)). For
proper conservation of the total energy, Sundaram & Collins (1996) have shown
that the reverse interpolation of particle source should be the same as the forward
interpolation; hence, an identical cubic Lagrangian polynomial is used for both the
forward and backward interpolations.

The Navier–Stokes equations are discretized on a 1283 cubic grid. Periodic boundary
conditions are imposed and there is no mean flow. The fluid velocity is updated using a
pseudo-spectral algorithm similar to the one described in Canuto et al. (1988). Partial
dealiasing is accomplished by zeroing wavenumbers beyond 8/9 kmax as originally
suggested by Orszag & Patterson (1972). Time advancement is done using an efficient
fourth-order Runge–Kutta scheme.

4.3. Parameters

The physical parameters that characterize the particles are number, Np, diameter,
σ, and density, ρp, although it is convenient to replace the density by the particle
response time, τp, defined in (57). The particle response time arises naturally from
the dynamic equations and is therefore the true measure of the particle inertia. This
time can be non-dimensionalized using any of the turbulence time scales. However,
anticipating the importance of the small scales, we choose to non-dimensionalize with
the Kolmogorov time scale. Thus, a particle Stokes number is defined as

St =
τpε

1/2

ν1/2
. (62)

We are interested in particle Stokes numbers that are initially of order unity. For
aerosol systems with particle–fluid density ratios that are on the order of 1000,
the corresponding Reynolds numbers are appropriately small. A physical system
that corresponds to this condition would be, for example, 100 µm particles (ρp =
1000 kg m−3) suspended in air at standard conditions (ρf = 1 kg m−3, µ = 2 ×
10−5 kg m−1 s−1) with turbulent energy dissipation rates (ε) in the range of 0.1–
1.0 W kg−1. Conditions such as these are easily achieved in pneumatic pipe flows.

Two other dimensionless parameters are required to complete the description of
the particles. We choose the volumetric and mass loadings of the particles. In general,
the mass loadings (φp) were appreciable (∼ 10%) whereas the volumetric loadings
(αp) were kept small so that the simulations were well within the dilute limit (∼ 10−4).
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Parameter F1 F2

L 2π 2π

u′(0) 0.9362 0.9362
ε(0) 0.22282 0.19182
ρf 1.0 1.1616
ν 7.854× 10−3 6.761× 10−3

le(0) 1.6223 1.6223
Te(0) 1.7328 1.7328
η(0) 0.0384 0.035629
τη(0) 0.18774 0.18774
λ(0) 0.68074 0.68074
Reλ(0) 81.145 94.258
kmaxη(0) 2.1845 2.027
∆t 0.0031 0.0031

Table 1. Listing of turbulence parameters for the two fluid runs used in the study. F1 is the base,
unladen fluid computation. F2 denotes a fluid laden with infinitesimal particles at an identical
mass loading, simulated as a fluid with a higher effective density. The other parameters are defined
as follows: L is the box size; u′(0) is the initial turbulence intensity; ε(0) is the initial turbulence
dissipation rate per unit mass; ρf is the fluid density; ν is the fluid kinematic viscosity; le(0) is
the initial integral length scale; Te(0) is the initial large eddy turnover time; η(0) is the initial
Kolmogorov eddy length scale; τη(0) is the initial Kolmogorov eddy time scale; λ(0) is the initial
Taylor microscale; Reλ(0) is the initial turbulence Reynolds number based on the Taylor microscale;
kmasη(0) is the initial resolution of the calculation; and ∆t is the time increment. All dimensional
quantities are expressed in arbitrary units.

Two parametric studies were carried out. The first was designed to isolate the
effect of Stokes number while fixing the volumetric and mass loadings. This was
accomplished by varying both the particle diameter and particle number density
simultaneously, in such a manner that the product Npσ

3 was constant. In addition, a
limiting solution for the case of σ → 0 (Np →∞) was sought. In this limit, we assume
that the ‘particles’ behave precisely like fluid elements, on account of their size, and so
the particle–fluid system reduces to a pure fluid with an appropriately elevated density
(to account for the mass of particles), but unaltered molecular viscosity (owing to the
low volume fraction of particles). This conceptual argument, beyond being intuitively
satisfying, is at least partially supported by recent numerical simulations by Nitsche
& Batchelor (1997). They looked at the motion of a spherical blob, consisting of a
viscous fluid embedded with a large number of tiny particles, as it fell through the
pure fluid under gravity. Their simulations showed that in the limit of a large number
of small particles the motion of the blob closely resembled the expected motion of
an immiscible drop with an appropriately elevated density and no surface tension.

The second study considers the effect of varying the volumetric and mass loadings
while fixing the Stokes number. This was accomplished by varying the number of
particles with a fixed density and diameter (and hence response time). Thus, the
dynamic properties of each particle was fixed so as to isolate the effect that loading
has on the system.

4.4. Organization of computations

The fluid turbulence properties and scales at the start of each simulation are enumer-
ated in table 1. Fluid run F1 is the unladen fluid used as the base fluid case for the
investigation. The augmented-density fluid run (simulating the system loaded with
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αp
Phenomenon Index τp/Te τp/τη σ/η Np ρp/ρf (×104) φp

Inertia study A 0.17 1.60 0.18 262 144 900 1.80 0.14
B 0.35 3.20 0.26 89 915 900 1.80 0.14
C 0.69 6.41 0.36 32 768 900 1.80 0.14

Loading study D 0.35 3.20 0.18 262 144 1800 1.80 0.24
F 0.35 3.20 0.18 89 915 1800 0.6 0.1
G 0.35 3.20 0.18 32 768 1800 0.2 0.04

Table 2. Listing of the fundamental and re-expressed particle parameters for the various runs used
in the study. Note that τp/τη is referred to as the Stokes number in the text; σ/η is the dimensionless
particle diameter; Np is the total number of particles; ρp/ρf is the particle-to-fluid density ratio;
and αp and φp are the volume and mass fraction of particles respectively. All fluid length and time
scales are based on their initial value.

vanishingly small particles) is denoted by F2. Table 2 provides a listing of the particle
runs and associated parameters used in this study. Particle-laden computations are
indexed A, B, C, D, F, G. Runs (F2, A, B, C) constitute the Stokes number study,
while the loading study includes runs (F1, D, F, G).

The initial fluid field was obtained from a stationary forced run. Particles were
initially placed in random, non-contact positions and assigned fluid velocities to
begin with. The time required for the particles to equilibrate with the fluid from this
initialization is a function of their inertia or Stokes number. The mean-square slip
velocity (which is proportional to the dissipation due to particle drag) provides a
measure of the adjustment between the two phases. The point in time at which the
drag dissipation begins to decrease is indicative of the attainment of equilibrium. As
will be seen later, all particle runs achieved equilibrium by approximately one eddy
turnover time. The combined systems were time advanced up to approximately four
eddy turnover times at which point the turbulence in the particle-loaded cases had
decayed to Reλ ≈ 20 (see figure 1).

5. Particle and fluid kinetic energy
In this section we present results for the total kinetic energy of the particle and

fluid phases defined respectively as

Tf ≡ 1

2

∫
V

ρfu
2 dV = 1

2
ρfu2V (63)

and

Tp ≡ 1
2
mp

Np∑
n=1

(vn)2 = 1
2
mpv2Np, (64)

where V is the total volume of the system and u2 and v2 are the average fluid and
particle kinetic energies respectively. The integral in (63) is evaluated approximately
by summing over all of the grid points in the system. For an isotropic and periodic
particulate system, the exact dynamic equation for the total fluid kinetic energy can
be shown to be (Sundaram & Collins 1996)

dTf
dt

= −Φv −
Np∑
n=1

mpu(x
n) · [u(xn)− vn]

τp
, (65)
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Figure 1. Decay of turbulence Reynolds numbers based on the Taylor microscale, Reλ, for various
Stokes numbers St. Computations are continued until a weak turbulence limit of Reλ ≈ 25 is
reached.

where

Φv ≡
∫
V

ρfε dV (66)

and

ε ≡ ν (∇u+ ∇uT ): ∇u. (67)

The total particle-phase kinetic energy is given by

dTp
dt

=

Np∑
n=1

mpv
n · [u(xn)− vn]

τp
. (68)

Note that particle collisions play no role in the total particle kinetic energy since
they are elastic and thus conserve the total kinetic energy of the colliding pair.
Summing (65) and (68) yields an expression for the total kinetic energy of the system,
Tt ≡ Tf + Tp:

dTt
dt

= −Φv − Φp, (69)

where

Φp ≡
Np∑
n=1

mp [u(xn)− vn]2

τp
. (70)

Notice that the total kinetic energy of the system is dissipated by two mechanisms:
(i) viscous dissipation occurring throughout the continuous fluid phase (Φv); and
(ii) losses due to drag at the particle interfaces (Φp). Thus, particles are manifestly
dissipative to the total kinetic energy of the system.
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Figure 2. Evolution of the normalized total kinetic energies (i.e. fluid + particle) with time.
Increase in particle Stokes number is seen to lower the total energies.

Several earlier studies (Squires & Eaton 1990; Elghobashi & Truesdell 1993) have
considered the effect that the particles have on the fluid-phase kinetic energy. Here
the question is more subtle because there is a continuous exchange of energy between
the two phases that is governed by the relative magnitudes of u2, u · v and v2. Once
the particles have had sufficient time to equilibrate, it is observed that

u2 > u · v > v2 (71)

implying that for particle systems at equilibrium and in the absence of body forces or
mean-flow gradients, the fluid phase continuously loses energy while the particles gain
energy from the drag interaction; however, (69) ensures that the loss from the fluid
exceeds the gain by the particles, resulting in a net loss of energy from the system. It
must be emphasized that these results apply to equilibrium systems only, and indeed
they potentially may be reversed under the following circumstances:

(i) particles obtain energy from a source other than the fluid (for example, from
gravity or due to the initial conditions);

(ii) if there are mean shear production terms present, the presence of particles may
subtly alter the production–dissipation balance, again possibly leading to an increase
in the fluid turbulent energies.

Recall that the Stokes number study includes the fluid run (F2) and the three
particle runs A, B and C. This study is designed so that the total mass of each
system is identical. Likewise, the total energy of each system, Tt, is initialized to the
same value. Figure 2 shows the behaviour of Tt as a function of time (normalized
by its initial value). As suggested by (69), the presence of particles increases the rate
of dissipation of kinetic energy in the system. Furthermore, the degree of energy
suppression increases monotonically with increasing Stokes number. The explanation
for this trend is deferred until after the discussion of dissipation mechanisms has been
completed.
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Figure 3. (a) Fluid turbulent kinetic energy as a function of time at three different Stokes numbers.
Notice that the energy is suppressed with an increase in St. (b) Particle kinetic energy as a function
of time. At long times, they show a similar trend.

Figure 3(a) shows the fluid turbulent kinetic energies normalized by their initial
value. The trend observed here is identical to that found for the total kinetic energy. As
noted above, the net effect of the particles (at equilibrium) is to reduce the fluid energy.
This effect is also expected to grow with increasing Stokes number. The particle energy
(see figure 3b), on the other hand, is only observed to obey the preceding trends at
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long times, while the behaviour at short times is reversed. We believe this cross-over
at early times occurs because the particles still retain some memory of their initial
velocity. Recall that the particles were initially given velocities equal to the local fluid
velocity. However, because of their increased inertia, the equilibrium energy for the
particles is below that of the fluid (see (71)). This suggests that initially the particles
are not in equilibrium with the fluid, and furthermore, their degree of disequilibrium
increases with Stokes number. Thus, the short-time behaviour in figure 3(b) reflects the
non-equilibrium initial conditions, while the long-time behaviour follows the expected
trends.

The rates of dissipation of energy due to viscous forces (Φv) and the presence
of particles (Φp) are plotted in figures 4(a) and 4(b) respectively. Both curves are
normalized by the initial value of the viscous dissipation rate (Φv(0)) for convenience.
At short times, the viscous dissipation rate is strongly influenced by the presence of
the particles. The explanation is related to the well-known pivot in the fluid energy
spectrum induced by the exchange of energy with the particles (Squires & Eaton 1990;
Elghobashi & Truesdell 1993). As will be seen later, the pivot shifts energy from low
to high wavenumbers (i.e. from large to small length scales), thereby increasing the
overall dissipation rate. The degree of pivoting increases with Stokes number, which
explains why the peak in the rate of viscous dissipation also increases with Stokes
number. At long times, the trend reverses because at high Stokes number the fluid
energy is dissipated to such a degree that the local dissipation rate is ultimately
reduced. Section 7 will consider the pivoting of the energy spectrum in greater
detail.

The second dissipation rate arising from the particles, Φp, is shown in figure 4(b).
Since this dissipation is proportional to the velocity difference between the particles
and fluid, its value is initially zero. It then increases to a maximum before decaying.
The location of the maximum shifts to longer times with increasing Stokes number
indicating a slower equilibration process; however, it is more difficult to interpret
the magnitude of the maximum on account of the decaying energy levels of both
phases. Notice also that at long times, after the particles have had time to equili-
brate, the three curves are nearly identical. This implies that although the rate of
dissipation of energy by particles is perhaps a strong function of the mass loading
of particles, it is relatively insensitive to the particle Stokes number. By considering
(71), the convergence of the curves in figure 4(b) suggests that once the particles
have settled into equilibrium, (u− v)2 ∝ τp, over the limited range of particle St
considered.

An important question to consider is how the fluid response is related to the particle
loading. The loading study (F1, D, F and G) consists of a series of runs where the
particle properties are fixed while the number of paricles (and hence both the volume
and mass loadings) are varied. We include, for the sake of comparison, a single-phase
fluid computation which corresponds to setting the number of particles to zero.

Figure 5(a) shows the excess viscous dissipation (∆Φv = Φv − ΦF1
v ) normalized

by the initial viscous dissipation and the mass loading. The curves normalized in
this fashion collapse together suggesting that the contribution from each individual
particle is nearly same. The equivalent curves for the particle dissipation, presented
in figure 5(b), show a similar trend. We therefore conclude that at the concentrations
considered in this study, each particle acts independently, and thus their collective
effect scales linearly with their total number, Np. We anticipate that such a simplistic
scaling would not be valid at higher particle loadings.
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Figure 4. (a) Total dissipation of turbulent energy by viscous forces. An increase in particle Stokes
number is seen to enhance the viscous dissipation in the fluid phase. The crossover at long times
is believed to be related to the varying total energies remaining in the system at long times. (b)
Particle drag dissipation as a function of time. Notice that they are almost identical at long times
(i.e. beyond the equilibration).

6. Two-point density correlation
We begin our discussion of two-point statistics by considering the density corre-

lation, B(r), defined in (38). The density correlation is related to two functions, the
Overlap function I(r) which depends solely on the particle shape, and the radial
distribution function h̃pp(r) which describes statistically the spatial distribution of the
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Figure 5. (a) Excess viscous dissipation rate (due to the presence of particles, ∆Φv = Φv −ΦF1
v ) and

(b) particle drag disspation rate normalized by the particle loading. The collapse of the curves in
both plots indicates a linear scaling with the number of particles, Np.

particles (see §2 for details). This section discusses the results obtained from the DNS.
All correlations (spectra) were obtained after approximately two eddy turnover times
(unless specified otherwise). This time was chosen because sufficient time had elapsed
so that the particles had achieved equilibrium with the fluid, yet the turbulence had not
decayed to the weak-turbulence limit. Although correlations (spectra) at later times
differ quantitatively from those presented here, the trends and qualitative behaviour
remain unaffected.
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Figure 6. The radial distribution function as a function of r (r > σ) at different (a) particle Stokes
numbers, and (b) particle loadings. As has been observed in previous studies, the RDF is very
sensitive to the Stokes number and relatively insensitive to the loading (assuming it remains in the
dilute regime). The small effect of loading that is observed is due to particles excluding others in
their immediate neighbourhood.

Figure 6(a) shows the radial distribution function (RDF), g̃pp(r), for runs A, B, and
C. It is known that for a uniformly distributed hard-sphere system, the maximum
value of the RDF can be approximated by

h̃pp(r ∼ σ) =
1 + αp

(1− αp)3
− 1 = O(αp). (72)
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Bearing in mind that volume concentrations are O(10−4), from the results shown in
figure 6(a), it is readily apparent that the particles are not uniformly distributed.
Furthermore, the degree of non-uniformity decreases with increasing Stokes number
over the range of Stokes numbers considered. The effect results from a phenomenon
known as preferential concentration, whereby particles, owing to their higher inertia,
are flung from regions of high vorticity and collect in regions of low vorticity (Maxey
1987; Squires & Eaton 1991). The increase in particle concentration in these low-
vorticity regions causes the RDF to increase at small r, compared to the randomly
distributed case. The result is qualitatively similar to an earlier study based on one-way
coupling (Sundaram & Collins 1997).

It is interesting to note that the RDF must satisfy the following integral constraint
(conservation of particles) : ∫

V

g̃pp(r) dr =
Np − 1

Np

V ≈ V . (73)

This integral constraint necessitates a crossover between the various curves, as can be
seen in figure 6(a).

Figure 6(b) shows the corresponding dependence on the particle loading (runs D,
F, and G). Notice the relative insensitivity of the RDF to the loading. This had
been observed in a previous study (Sundaram & Collins 1997) and is related to the
relatively dilute conditions under investigation. Corrections to the RDF for particle
volume exclusions should scale like O(αp), which is small. The somewhat larger
variation seen in figure 6(b) is most likely due to statistical differences in the fluid
state at the time of comparison.

It is often useful to consider the Fourier transform of the correlations in order to
gain some understanding of the different length scales of the fluid motion that affect
the density correlation. Unlike the calculation of the energy spectrum, which can be
accomplished by taking advantage of the spectral representation used in the numerical
method, the transform of the RDF must be accomplished by directly transforming
the RDF itself. This is a troublesome calculation because of the inherent statistical
noise in the RDF. Mild statistical noise in the original data set can lead to substantial
noise in the resulting Fourier transform, thus some smoothing is required (Sundaram
1996).

Figure 7 shows the three-dimensional Fourier transform of the RDF. It appears
that the maximum in each curve increases in magnitude and shifts slightly to higher
wavenumbers with decreasing Stokes number. It was argued in an earlier study (Sun-
daram & Collins 1994a) that an outward shift in these spectra was the result of
a decrease in the mean separation distance between neighbouring particles. As this
comparison is being made at a constant volume loading, this can only imply varia-
tions in the degree of preferential concentration. Also, note that for non-penetrating
particles h̃pp(0) = −1 which implies that all corresponding spectra must integrate to
−1. At first glance, it may appear odd that these curves do not cross the zero axis;
however it must be recalled that the curves shown in figure 7 are only valid over the
range 0 < k � 1/σ. Apparently the curves cross the axis at very high wavenumbers;
unfortunately, that behaviour cannot be observed since it requires information about
the RDF at small separation distances, which is precisely where the signal-to-noise
ratio is very small.

The corresponding density correlation spectrum is presented in figure 8(a). The
maxima observed in the RDFs can now be seen in the density correlations as well,
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Figure 7. The three-dimensional Fourier transform of h̃pp = g̃pp − 1 is shown as a function of
wavenumber k (k < 1/σ). The shift in the maximum towards higher wavenumbers and the larger
tail with decreasing Stokes number is indicative of growing preferential concentration.

although now the curves are seen to rise again at high wavenumbers. The cause of
this second increase is the Overlap function, which in Fourier space is dominant at
high wavenumbers. Figure 8(b) shows the same density spectra over a much larger
range of wavenumbers. At high wavenumbers, the three curves collapse into a single
curve defined by the Overlap function. Furthermore, the initial peaks in the curve
seen in figure 8(a) are now completely obscured by the much larger oscillations from
the Overlap function.

In a particle–fluid system, it can be intuitively understood that there are two dif-
ferent sources for density fluctuations. One is the variation between particle and fluid
densities, occurring at the particle surface. This action occurs over scales correspond-
ing to the particle size and can be termed static B. The other major source of density
fluctuations is due to changes in the relative spatial distribution of the particles.
This component, referred to as the dynamic B typically occurs over much larger fluid
dynamic scales.

Note that in gas–solid flows at high density ratios, the static component is many
orders of magnitude larger than the dynamic component. This fact is readily apparent
in figure 8. Furthermore, although the fraction of total B (see (21)) contributed by
the static component is substantial, it is the dynamic B that ultimately impacts the
turbulence. This is a troublesome problem for single-point models that, by definition,
cannot distinguish between the static and dynamic components. Indeed, single-point
models must often artificially reduce the value of total B so that it more closely
resembles the dynamic B contribution (Besnard, Harlow & Rauenzahn 1987). This
again highlights the significant advantage gained by utilizing two-point statistics to
analyse and/or model particle-laden turbulent flows.
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Figure 8. (a) The density correlation as a function of k at different particle Stokes numbers. All
dynamic information (pertaining to the changing RDF) is contained within the first 20 wavenumbers.
Thereafter the curves are dominated by the Overlap function. This is evident in (b) which shows the
same correlation over a much larger range of wavenumbers. The initial peak caused by the RDF
is now completely obscured by the much larger oscillations from the Overlap function.

7. Two-point Reynolds stress
We begin the discussion of the energy correlations by comparing the three compo-

nent correlations (fluid–fluid, fluid–particle, and particle–particle) from a typical run.
Although the results from any given run are functions of the parameter values, the
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Figure 9. Comparison of the three component correlations from run B (r > σ). The ordering at
small r is a consequence of the Schwarz inequality and the fact that the particles contain less energy
than the fluid. Notice that the particles are more strongly correlated at intermediate distances than
the fluid.

qualitative features of the correlations and spectra remain the same. Figure 9 shows
a comparison of the three component correlations from run B with particle Stokes
number value of 3.2. Notice that the fluid correlation is relatively strong at small dis-
tances, but then drops off more quickly than the particle–fluid and particle–particle
correlations. This suggests that the inclusion of particles increases the correlation
length relative to the pure fluid. A plausible physical argument for the increase in
the correlation length is as follows. Consider two initially correlated but separating
particles and two equivalent fluid elements. Upon separating a moderately large dis-
tance r (say) the particles, having greater inertia than the fluid, will remain relatively
unaffected (i.e. , more strongly correlated) by their new fluid mechanical environment
than the equivalent fluid elements. Hence particles remain correlated over greater
lengths than fluid elements.

Figure 10 shows the total energy correlation for the three values of the Stokes
number and the fluid run corresponding to St = 0 (Runs A, B, C and F2). Notice
that the correlation length increases monotonically with increasing Stokes number.
This visual trend is confirmed by the integral lengths shown in table 3.

A complementary view can be found by considering the component and total
energy spectra. Fluid–fluid spectra were obtained directly from the spectral repre-
sentation of the fluid phase, whereas the particle–fluid and particle–particle spectra
were determined by transforming the physical space correlations. As noted in §6,
computing the Fourier transform of the correlations required the use of windowing
functions (Sundaram 1996) to eliminate the high-frequency noise generated by the
transform process. Some confidence was gained by comparing the fluid–fluid spec-
trum determined from the correlation with one obtained directly in Fourier space.
In general, we observe that windowing functions have little effect on the low to
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Figure 10. Total (fluid+particle) energy correlation as a function of the separation distance, r
(r > σ) at three values of the Stokes number and the F2 run. The insert is a blowup of the small-r
behaviour.

moderate wavenumber range, but can systematically influence the high wavenumber
part of the spectrum. Thus, some caution is required in interpreting the trends in
spectra beyond a wavenumber of approximately 32. The three component spectra for
run B are summarized in figure 11. The insert shows a magnified view of the low
wavenumber behaviour. Notice that the fluid–fluid spectrum is the weakest of the
three at small wavenumbers, but is dominant at intermediate to high wavenumbers.
This again indicates that the dominant scale for the fluid–fluid correlation lies at a
higher wavenumber (smaller scale) than the dominant scales for the particle–fluid or
particle–particle correlations. It is also interesting to note that the fluid–fluid spectrum
is greatly enhanced at high wavenumbers due to the source from the particles. This
has been referred to in the literature as the spectral pivot (Squires & Eaton 1990;
Elghobashi & Truesdell 1993). This pivot enhances the rate of dissipation of energy
in the fluid and is therefore consistent with the arguments presented in §5. We will
discuss the pivot of the fluid energy spectrum in greater detail shortly.

Technically, the integral of the particle–fluid spectrum over all k must vanish to
satisfy a kinematic constraint. It is therefore anticipated that the particle–fluid spec-
trum must change sign at high wavenumbers so as to satisfy the integral constraint. A
careful analysis of the spectrum at high wavenumbers indeed shows that the spectrum
changes sign at k > 1/σ. This negative region is not seen in figure 11 because of the
limited range of k that is shown.

The normalized spectra for the Stokes number study (Runs A, B, C, and F2) are
shown in figure 12. Notice that the total energy spectra (figure 12a) show a pivot
with Stokes number at low wavenumbers. That is, the fraction of energy at the lowest
wavenumbers increases with the particle Stokes number, whereas the reverse is true at
intermediate wavenumbers. A similar trend is also observed in the component spectra
(see figure 12b–d); once again, the particle–particle spectrum shows the strongest trend,



132 S. Sundaram and L. R. Collins

Run F–F F–P P–P

F1 0.8074 — —
F2 0.7843 — —
A 0.8481 0.8949 0.9117
B 0.8683 0.9675 1.0253
C 0.8728 1.0807 1.1888
D 0.8839 0.9884 1.0459
F 0.8575 0.9721 0.9920
G 0.8292 0.9493 1.0150

Table 3. Integral lengths calculated for all three types of correlations from all runs at T = 3.77,
where F denotes fluid and P particle. Particle velocities are observed to correlate the strongest with
fluid correlating the least. Also note that the lengths increase with both inertia and loading (albeit
much more weakly).
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Figure 11. Comparison of the three component spectra from run B (k < 1/σ). The fluid–fluid
spectrum was obtained directly from the Fourier transform of the fluid velocity, while the others
were obtained by transforming the correlations. Fluid–fluid energies are in general larger than the
fluid–particle or particle–particle spectra except at the lowest wavenumbers. The insert is a blowup
of the small-k behaviour.

followed by the fluid–particle and fluid–fluid spectra. This low-wavenumber pivot is
the spectral manifestation of the increase in the correlation length described earlier.

The fluid–fluid spectra shown in figure 12(b) are unique in that they also exhibit a
pivot at high wavenumbers, as noted in earlier investigations (Squires & Eaton 1990;
Elghobashi & Truesdell 1993). Particles absorb energy from the large-scale sweeping
motions of the fluid and, via disturbance flows, liberate energy at small scales. The net
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effect is a decrease in the total energy content of the fluid and an increase in the rate of
dissipation of energy in the fluid. Consistent with earlier investigations, the degree of
pivoting in the spectrum increases with increasing particle Stokes number. However,
contrary to earlier reports (Elghobashi & Truesdell 1993), the crossover point appears
to vary with Stokes number and time. In an effort to reconcile this variation, the
fluid–fluid energy spectra are re-plotted in figure 13 against wavenumbers that are
scaled by the Taylor microscale (kλ(t)/4π). As can be seen, the crossover wavenumbers
substantially collapse in this modified coordinate system (over 70% reduction in the
spread in the crossover wavenumber). The suggestion of scaling the pivot point with
the Taylor microscale seems reasonable. On account of the direct transfer of energy
by particles from large scales (O(le)) to scales on the order of the particle size (σ < η),
one expects some intermediate scaling between the two to define the pivot. Assuming
the universality of the Kolmogorov spectrum, the pivot would not be expected to
occur in the one-parameter inertial range where the spectrum is determined wholly
by the dissipation rate, ε. Instead, one would expect the pivot wavenumber to lie
beyond the inertial and in the initial portion of the dissipation region, where E(k) is
determined by a combination of the dissipation rate and the kinematic viscosity, ν,
i.e. where the Taylor microscale is located.

7.1. A view of turbulence modulation by particles

The presence of two pivots in the total energy spectrum (at low and high wavenum-
bers) suggests an explanation for the suppression and enhancement of turbulence
that can occur with the introduction of particles to a turbulent flow field. The shift
of energy to high wavenumbers in the fluid phase will clearly increase the viscous
dissipation rate, as has already been shown. On the other hand, the pivot at low
wavenumbers, in the presence of a mean shear (as would be found in an inhomoge-
neous flow), may increase the rate of production of turbulent energy as well. This can
be seen, for example, by considering the source term in the standard k–ε equation.
This term is usually modelled as a turbulent viscosity multiplied by the mean velocity
gradient squared. As the turbulent viscosity is proportional to the integral scale of
the turbulence, the increase in the integral scale caused by the particles could lead
to a higher rate of production of turbulent energy. Thus, depending on the circum-
stances (i.e. the particle Stokes number and loading) it is plausible that the presence
of particles may lead to an augmentation of turbulence, if the increase in production
outweighs the enhanced dissipation rate, and suppression of turbulence if the reverse
is true. Furthermore, since production and dissipation are usually large numbers with
a small difference, the result of a small bias one way or the other can ultimately lead
to a significant change in the turbulent kinetic energy. It must be emphasized that
since the present simulations contain no source terms, the suggested mechanism is
only speculation. Nevertheless, in the light of the continuing controversy regarding
the role of particles in turbulent flows, the result may explain some of the conflicting
explanations for this phenomenon in the literature.

8. Summary
Direct numerical simulations of a volumetrically dilute, yet appreciably mass loaded,

suspension of finite-sized particles in a homogeneous turbulent fluid were performed
on a 1283 fluid grid using up to 643 particles. Particle diameters were kept sufficiently
small so as to ensure that the local Reynolds number characterizing the flow around
each particle remained small, enabling the use of Stokes drag to describe the force
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Figure 12 (a, b). For caption see facing page.

on the particle. In addition, particle collisions were treated as elastic or momemtum
and energy conserving. These assumptions provide the absolute simplest (non-trivial)
system to examine turbulence modulation. The emphasis of this investigation was
on understanding the spectral dynamics of the energy associated with the fluid and
particle phases. A novel two-field formalism that treats the particle and fluid phases
as a single ‘pseudo-fluid’ has been extended to compute two-point energy correlations
and spectra of the particle-laden flow field. The methodology outlined in this paper
is a natural way of extending spectral analysis to particulate flows in a manner such
that all single-point limits and other constraints are explicitly obeyed. The formalism
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Figure 12. (a) Total (b) fluid–fluid (c) fluid–particle (d) particle–particle spectra are shown in order
(k < 1/σ). All spectra display a crossover at small k (see inserts). Fluid–fluid and the total energy
spectra show the more classical pivot at larger k associated with particle feedback. Contrary to
prior investigations, this second crossover wavenumber is observed to vary with particle inertia.

decomposes the total energy spectrum into separate contributions involving specific
particle–particle, particle–fluid, and fluid–fluid correlations. Unknown correlations
required by the theory were then determined from the direct numerical simulation
databases. The notion of separating correlations and spectra into distinct particle,
fluid and inter-phase correlations was shown to be not only viable but also extremely
valuable in analysing the behaviour of particulate turbulent flows. By studying the
response of the spectra to changes in the parameter values, new insights into the
mechanisms responsible for turbulence modulation by particles were obtained.
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Figure 13. Fluid energy spectra, at T = 1.89 are plotted against wavenumbers scaled by the
Taylor microscale. The variation in the crossover wavenumber was reduced by over 70%.

The key non-dimensional parameters for a monodisperse system of particles are
the Stokes number, the volume fraction of particles and the mass fraction of particles.
In one parametric study, the particle Stokes number was systematically varied while
holding the volumetric and mass loadings constant. A second, complementary study
was also performed in which the particle Stokes number was fixed while the volumetric
and mass loadings were varied simultaneously by changing the total number of parti-
cles. The simplest physical arguments suggest that in the dilute limit, particles should
act independently, and so all extrinsic effects of the particles should scale linearly with
the total number of particles. Indeed, this was confirmed by the loading study. Both
the magnitude of the particle dissipation (Φp) and the enhancement in the viscous
dissipation (∆Φv) were found to scale nearly linearly with the particle number density.

Single-point turbulent kinetic energies (fluid + particle) determined from the sim-
ulations were observed to decrease monotonically with increasing particle Stokes
number and/or load. The apparent cause can be traced to two effects: (i) the rate
of viscous dissipation of turbulent energy was enhanced by particles; and (ii) the
particles introduced a second particle drag dissipation mechanism. The first effect is
related to the well known pivot in the fluid energy spectrum caused by the particles.

The two-point density correlation (spectrum) was shown to be completely char-
acterized by two functions: (i) the Overlap function; and (ii) the particle–particle
radial distribution function (RDF). The Overlap function is a geometric function that
depends on the shape of the particles only (spheres in this case), whereas the RDF
describes the spatial distribution of the particles. The contribution to the density
correlation (spectrum) from the Overlap function was shown to dominate that from
the RDF at large k. Nevertheless, it is the RDF (and the spatial information therein)
that ultimately controls the dynamics of the two-phase system. It is important to note
that a single-point description of a particle-laden system cannot distinguish these
vastly different contributions to the density correlation, whereas the distinction arises
naturally in a two-point formulation.
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At the particle loadings considered in this study, the RDF for a uniformly dis-
tributed particle field would nearly equal unity for all separation distances larger
than the particle diameter. However, owing to a phenomenon known as preferential
concentration, the RDFs from the simulations were substantially greater than unity.
The degree of preferential concentration was found to be sensitive to the particle
Stokes number, but was only weakly dependent on the particle loading. Equivalent
trends were observed in the Fourier transforms of the RDFs as well. For example, the
first peak in the spectrum shifted towards higher wavenumbers as the particle Stokes
number decreased, indicating that interparticle separation distances were shrinking
(or the system was becoming more strongly concentrated).

Next, two-point component and total energy correlations and spectra were deter-
mined from the DNS data. At small separations, the particle–particle correlations
decayed more quickly than either the fluid–particle or fluid–fluid ones. Similarly in
Fourier space, the particle–particle spectrum was observed to pivot at low wavenum-
bers causing an increase in the integral scale of the system. The explanation appears to
be related to the greater inertia of the particles. Particles that are strongly correlated
at one instant tend not to decorrelate as rapidly as fluid points, owing to their greater
inertia; consequently their correlation length is greater than that for equivalent fluid
elements.

This lends evidence to an alternative explanation for the mechanism by which
particles sometimes enhance and other times diminish turbulence. We have shown
that particles, in the absence of source terms, can only increase the rate of dissipation.
However, if a source term were also present (due to mean shear, for example),
the presence of particles may increase the integral length scale of the turbulence and
thereby increase the production rate as well. This suggests that in a particle-laden flow
with mean shear, a competition arises between the enhancement in the production and
dissipation rates. That competition is parameterized by the particle Stokes number and
loading. As production and dissipation are often two large numbers whose difference
is small, even a small bias one way or the other can have a profound effect on the
turbulent kinetic energy. Future studies will focus on the energy production mechanism
in a homogeneous turbulent shear flow (for instance) to test the proposed hypothesis.

All computations were performed on the CRAY YMP-C90 at the Pittsburgh
Supercomputing Center under grant CTS930052P. The authors also acknowledge
financial support for this study from Dow Chemical through the Young Minority
Investigator Award (awarded to L.R.C.) and Arco Chemical.

Appendix A. Derivation of the two-field form of the generalized Reynolds
stress

In this Appendix we derive the two-field form of the generalized Reynolds stress
correlations (see (30)–(33)). The analysis is similar to the one used in Sundaram &
Collins (1994a) for the density correlation. We begin by considering a volume V of
fluid with a density ρf that contains Np indistinguishable spherical particles embedded
within, each of diameter σ, density ρp and response time τp. Let the particles, numbered
1, · · · , Np, be characterized by their positions x1, · · · , xNp and velocities v1, · · · , vNp . In
general the particle and fluid densities are not matched, and so the suspension can be
considered a variable-density ‘pseudo-fluid’ with discontinuous density changes at the
particle interfaces. Under turbulent flow conditions, this pseudo-fluid will generate a
Reynolds stress in much the same way that a pure fluid does. The Reynolds stress
in a variable-density system can be defined in several different ways. Based on earlier
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studies that favour density-weighted or Favre-averaged variables, we have selected
the generalized Reynolds stress defined as

Rij(x, x+ r) ≡ ρ(x)u′i(x)u′j(x+ r). (A 1)

The particle density can be decomposed as follows:

ρ(x) ≡ βp(x)ρp + βf(x)ρp. (A 2)

Given the equivalent decomposition of the velocity field shown in (25), and further
noting that β2

p (x) = βp(x); β2
f (x) = βf(x); and βp(x)βf(x) = 0, the Reynolds stress in

the pseudo-fluid can be decomposed into four terms (as shown in (27))

Rij(r) = R
pp
ij (r) + R

ff
ij (r) + R

fp
ij (r) + R

pf
ij (r). (A 3)

In principle, the above correlations can be evaluated from the DNS; however
the expressions contain particle-phase-averaged properties that would be difficult to
determine directly from the simulations. By taking advantage of the fact that the
density and velocity everywhere within a given particle is constant, it is possible
to express these relationships in terms of particle centre statistics (i.e. the radial
distribution functions and velocity correlations), thereby eliminating the need to
average over the particle phase. The derivation for each component correlation is
given in the subsections below.

A.1. Two-field representation for Rppij (r)

The particle-particle component of the Reynolds stress is defined as

R
pp
ij (r) = ρp βp(x)vi(x) βp(x+ r)vj(x+ r). (A 4)

Substituting the relationships for βp(x) from (3) yields

R
pp
ij (r) = ρp

Np∑
m=1

H
(

1
2
σ − |x− xm|) vmi Np∑

n=1

H
(

1
2
σ − |x+ r − xn|) vnj (A 5)

Since the particles are indistinguishable, the above relationship can be divided
into two terms. The first term is the intra-particle correlations resulting from two
points lying within a single particle (obviously, the separation distance between the
two points, r, must be smaller than σ). The second term results from inter-particle
correlations resulting from points lying within two different particles. The result of
this separation is

R
pp
ij (r) = ρpNp H

(
1
2
σ − |x− x1|) v1

i H
(

1
2
σ − |x+ r − x1|) v1

j︸ ︷︷ ︸
single−particle

+ ρpNp(Np − 1)H
(

1
2
σ − |x− x1|) v1

i H
(

1
2
σ − |x+ r − x2|) v2

j︸ ︷︷ ︸
two−particle

. (A 6)

For an isotropic flow field the single-particle term is given by

single-particle = ρp NpH
(

1
2
σ − |x− x1|)H ( 1

2
σ − |x+ r − x1|)︸ ︷︷ ︸

αpI(r)/Vp

v1
i v

1
j

= ρp
αp

Vp
I(r)

v2

3
δij , (A 7)

where δij is the Kronecker delta function.
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The two-particle term requires a few steps before it can be reduced to an equivalent
form. First, we can re-express the Heaviside functions as

H
(

1
2
σ − |x− x1|) =

∫
V

H
(

1
2
σ − |x− R1|) δ(R1 − x1)dR1. (A 8)

Substituting into the two-particle term in (A 6) yields

two-particle = ρp

∫
V

∫
V

dR1dR2H
(

1
2
σ − |x− R1|)H ( 1

2
σ − |x+ r − R2|)

×Np(Np − 1)δ(R1 − x1)δ(R2 − x2)v1
i v

2
j . (A 9)

Then making the substitution z ≡ R2 − R1, we obtain

two-particle = ρpNp(Np − 1)

∫
V

dzδ(R1 − x1)δ(z + R1 − x2)v1
i v

2
j

×
∫
V

H
(

1
2
σ − |x− R1|)H ( 1

2
σ − |x+ r − z − R1|) dR1︸ ︷︷ ︸

I(|r−z|)

. (A 10)

Analogous to procedures in statistical mechanics (McQuarrie 1976) the above rela-
tionship can be re-expressed in terms of a conditional average and a radial distribution
function defined as

α2
p

V 2
p

g̃pp(z) ≡ Np(Np − 1)δ(x− x1) δ(x+ r − x2). (A 11)

Using the above function

two-particle = ρp

∫
V

α2
p

V 2
p

I(|r − z|)g̃pp(z)
[
v1
i v

2
j | x1 = R1, x2 = R1 + z

]
dz. (A 12)

The conditional average has been defined as Ẽpp
ij (z). Substituting this definition above

yields

two-particle = ρp
α2
p

V 2
p

∫
V

g̃pp(z)I(|r − z|)Ẽpp
ij (z)dz. (A 13)

Collecting both the single- and two-particle terms and substituting into (A 6) yields
the final relationship shown in the text (see (33))

R
pp
ij (r) = ρp

v2

3

αp

Vp
I(|r|)δij +

(
αp

Vp

)2

ρp

∫
V

g̃pp(|z|)Ẽpp
ij (|z|)I(|r − z|) dz. (A 14)

A.2. Two-field representation for Rfpij (r) or Rpfij (r)

The methodology to decompose R
fp
ij (r) and R

pf
ij (r) is essentially the same, so to

illustrate the approach we will only consider the former. The fluid-particle component
of the Reynolds stress correlation is defined as

R
fp
ij (r) = ρf βf(x)ui(x) βp(x+ r)vj(x+ r). (A 15)
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Substituting the relationships for βp(x) from (3) yields

R
fp
ij (r) = ρf βf(x)ui(x)

Np∑
n=1

H
(

1
2
σ − |x+ r − xn|) vnj . (A 16)

Once again, the relationship can be simplified by recognizing that the particles are
indistinguishable and so the sum over Np particles can be replaced by

R
fp
ij (r) = ρf Np βf(x)ui(x)H

(
1
2
σ − |x+ r − x1|) v1

j . (A 17)

Taking advantage of (A 8) we obtain

R
fp
ij (r) = ρf Np

∫
V

dR1H
(

1
2
σ − |x+ r − R1|) βf(x)ui(x)δ(x1 − R1)v

1
j . (A 18)

If we define g̃fp(r) as

g̃fp(r) ≡ NpVp

αpαf
βf(x)δ(x+ r − x1) (A 19)

(note that the normalization of g̃fp(r) is chosen such that it reduces to unity for a
uniform particle concentration) the correlation shown in (A 18) can be re-expressed
in terms of a conditional average

R
fp
ij (r) = ρf

(
αpαf

Vp

) ∫
V

H
(

1
2
σ − |x+ r − R1|) g̃fp(|R1 − x|)

×
[
ui(x)v1

j | βf(x) = 1; x1 = R1

]
. (A 20)

The conditional average has been defined as Ẽfp
ij (z). Substituting this above and letting

z ≡ R1 − x we obtain (see (31))

R
fp
ij (r) = ρf

(
αpαf

Vp

) ∫
V

H
(

1
2
σ − |r − z|) g̃fp(|z|)Ẽfp

ij (z) dz. (A 21)

A.3. Two-field representation for Rffij (r)

As the fluid-fluid correlation does not involve the particle phase, there is no need
to eliminate the particle-phase averaging as in the previous examples. Hence, the
only real modification that is made here is to replace the fluid-fluid correlation by
a conditionally averaged velocity correlation multiplied by an appropriate RDF (as
was done in the previous examples). We begin with the definition of the correlation

R
ff
ij (r) = ρf βf(x)ui(x) βf(x+ r)uj(x+ r). (A 22)

If we define the fluid-fluid RDF as

g̃ff(r) ≡ 1

α2
f

βf(x)βf(x+ r) (A 23)

then the Reynolds stress can be re-expressed as

R
ff
ij (r) = ρfα

2
fg̃

ff(r)
[
ui(x)uj(x+ r) | βf(x) = 1; βf(x+ r) = 1

]
. (A 24)

The conditional average in the above equation was defined as Ẽff
ij (z). Substituting

yields the final relationship (see (30))

R
ff
ij (r) = ρfα

2
fg̃

ff(r)Ẽff
ij (r). (A 25)
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Appendix B. Generalized expressions for density and Reynolds stress
correlations and spectra

The complete and rigorous expressions for the two-point density and Reynolds
stress correlations at arbitrary loadings and with homogeneous, but not necessarily
isotropic, turbulence are summarized in this Appendix for completeness.

B.1. Physical space

B(r) =

[
αp

Vp
I(|r|) +

(
αp

Vp

)2 ∫
V

h̃pp(|z|)I(|r − z|) dz

]
(ρp − ρf)2, (B 1)

R
ff
ij (r) = α2

fρfg̃
ff(r)Ẽff

ij (r), (B 2)

R
fp
ij (r) =

(
αpαf

Vp

)
ρf

∫
V

H
(

1
2
σ − |r − z|) g̃fp(z)Ẽfp

ij (z) dz, (B 3)

R
pf
ij (r) =

(
αpαf

Vp

)
ρp

∫
V

H
(

1
2
σ − |r − z|) g̃pf(z)Ẽpf

ij (z) dz, (B 4)

R
pp
ij (r) = ρp

v2
p

3

αp

Vp
I(|r|)δij +

(
αp

Vp

)2

ρp

∫
V

g̃pp(|z|)Ẽpp
ij (|z|)I(|r − z|) dz, (B 5)

where

g̃ff(r) = 1 +
1

α2
f

[
αp

Vp
I(|r|) +

(
αp

Vp

)2 ∫
V

I(|r − z|)h̃pp(z) dz

]
, (B 6)

g̃fp(r) = 1− 1

αf
H
(

1
2
σ − |r|)− αp

Vpαf

∫
V

H
(

1
2
σ − |r − z|) h̃pp(z) dz, (B 7)

g̃pf(r) = g̃fp(−r). (B 8)

B.2. Transform space

B̂(k) =
αp

Vp
Î(|k|)

[
1 +

αp

Vp

ˆ̃hpp(k)

]
(ρp − ρf)2, (B 9)

R̂ij(k) = R̂
ff
ij (k) + R̂

fp
ij (k) + R̂

pf
ij (k) + R̂

pp
ij (k), (B 10)

R̂
ff
ij (k) = α2

fρf
ˆ̃g
ff

(k) ∗ ˆ̃E
ff

ij (k), (B 11)

R̂
fp
ij (k) =

(
αpαf

Vp

)
ρfĤ(|k|) ˆ̃g

fp
(k) ∗ ˆ̃E

fp

ij (k), (B 12)

R̂
pf
ij (k) =

(
αpαf

Vp

)
ρpĤ(|k|) ˆ̃g

pf
(k) ∗ ˆ̃E

pf

ij (k), (B 13)

R̂
pp
ij (k) =

αpρp

Vp
Î(|k|)

[
v2
p

3
δij +

αp

Vp
ˆ̃g(k) ∗ ˆ̃E

pp

ij (k)

]
, (B 14)

where

ˆ̃g
ff

(k) = δ(k) +
1

α2
f

αp

Vp
Î(k)

[
1 +

αp

Vp

ˆ̃hpp(k)

]
, (B 15)



142 S. Sundaram and L. R. Collins

ˆ̃g
fp

(k) = δ(k)− 1

αf
Ĥ(k)

[
1 +

αp

Vp

ˆ̃hpp(k)

]
, (B 16)

and ∗ indicates a convolution and cf. Î(|k|) in (24). Also,

Ĥ(|k|) = 24Vp

(
sin (kσ/2)− 1

2
kσ cos (kσ/2)

)
(kσ)3

. (B 17)
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